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NEW STATISTICAL TEXTURAL TRANSFORMS FOR NON-STATIONARY
SIGNALS; APPLICATION TO GENERALIZED MULTIFRACTAL ANALYSIS
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CERCA, 5160 boul. D~carie, bureau 400, Montr9al (Quebec), Canada H3X 2H9,

e-mail: antoine@cerea. umontrealca

JIRI MULLER
Instituttfor Energiteknikk, P.O. Box 40, N-2007 Kjeller, Norway, e-mail: jiri @ife.no

We introduce a method to generate statistical textural transforms that improves the treatment of non-
stationarity and leads to a sharper detection of the boundaries between distinct textures (texture
segmentation). This method is based on a sliding window processing with fixed size. The basic idea
proposed by the authors is to readjust the measuring window around each pixel so as to maximize
homogeneity. We use this method with the dimensions D,(q) that are derived from the Generalized
Multifractal Analysis formalism, to show that the D,(q)s can detect and quantify departures from
multifractality, while providing the analogue of the classical generalized dimension if the measure is
multifractal.

1 Introduction

We propose a method to generate statistical textural transforms that improves the
treatment of non-stationarity. Our goal is to improve the quality of the texture
segmentations' that can be obtained from textural transforms based on a simple sliding
window processing2 . In this context, one usually assumes implicitly that the signal is
locally stationary and then proceeds directly with parameter estimation. This assumption
is usually not legitimate for every part of the signal. Indeed, there are usually some
windows that are not homogeneously textured, which can result in unreliable texture
parameters. We propose a more careful treatment of the local homogeneity that leads to
significant segmentation improvements. We also apply our method to the generalized
multifractal analysis (GMA) representation3 to show that the generalized dimensions
D,(q) can detect and quantify departures from multifractality, while providing the
analogue of the classical generalized dimension D(q) if the measure is multifractal.

2 Non-Stationarity and the legitimacy of statistical texture parameters

For a ID signal S(x), a resolution preserving4 textural transform associates to each point
of the x-axis a number that quantifies an aspect of the local variations of S(x) in the
neighborhood of x. The texture parameter associated to a point xo is often computed from
an interval centered on x0 such as [xo- L, / 2, x0 + L. / 2], where L, is the window size. In
this case, we talk about a sliding window processing of the signal. In the following, the
function giving a texture parameter as a function of x will be called a texture log. For
statistical textural transforms, the parameter computed from the signal is statistical in
nature.

Texture logs can be used to detect variations in the local statistics of a signal. The
signals of interest are therefore typically non-stationary. In this paper, we focus on signals
for which the textural variations are either slow or abrupt. In other words, we consider
signals that are almost piecewise stationary, i.e. nearly stationary on consecutive disjoint
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intervals. In this context, the presence of discontinuities at the boundaries of adjacent
stationary zones raises questions with respect to the sliding window processing. Consider
for instance the simple signal shown in Fig. 1. This signal is composed of four segments
of equal size (500 points). For each segment, the signal was constructed by adding
uniform random deviates (uncorrelated and uniform on [0, 1]) to either a constant or to a
slow linear trend. This signal will be regarded as approximately piecewise stationary.

To start with a very simple example of statistical texture parameter, let us suppose
that we want to obtain the mean texture log of this signal with a sliding window
processing, i.e. we compute for each point the arithmetic average of the window centered
on this point (Fig. 2). As long as the window lies entirely within one of the four segments,
then the data contained in this window is approximately stationary (i.e. statistical
homogeneity within the window) and it makes sense to compute the mean from the
window. However, for windows that overlap between two segments, the situation is
different. Indeed, such windows then contain two subsets of data that have different and
inconsistent probability distributions. From a statistical standpoint, it is not legitimate or
meaningful to blend two statistically inconsistent samples and then compute a mean.
Indeed, the mean obtained is not representative of any of the two statistical ensembles.
This simple example suggests that a statistical texture parameter should be computed
only for windows that are sufficiently homogeneous statisticallya, otherwise the resulting
parameter is neither representative nor statistically meaningful.

This leads to the problem of measuring the statistical homogeneity of a window. We
will use the simple approach that consists in splitting the window in two disjoint sub-
samples of equal size, and then to apply a statistical test to compare the distributions
obtained from each half. For this comparison, we will use the Kolmogorov-Smirnov
statistical test that gives the probability probi that the two samples were drawn from the
same distribution. To include a sensitivity to 2-point statistics, we will also compare the
distributions of the 2-point products s(i) s(i+n) (n = 0, 1, 2, ... ) obtained from each half
window (here s(i) denotes the value of the signal at point i). For each n, the Kolmogorov-
Smimov test gives a probability prob2(n) that the two samples were drawn from the same
distribution. We then define a homogeneity index by

Homogeneity Index = Min (probl, prob2 (1), prob2(2), ... }

i.e. our homogeneity index is the most pessimistic probability obtained from the statistical
comparisons involving one and two point statistics.

In Fig. 2 we plotted the mean texture log together with the homogeneity index for the
sample of Fig. I (window size = 50 points). The homogeneity index drops to extremely
small values at the discontinuities occurring at i = 500 and 1000. Around these locations,
the texture log takes the form of a linear transition between two plateaus. Elsewhere, the
homogeneity index is large enough to confirm the approximate stationarity of the signal.
In our opinion, the windows for which the homogeneity index is very low should not be
used to estimate a statistical parameter. For this reason, we propose to revise the idea of a
textural transform strictly based on a sliding window processing

a In this paper, we will use the expressions statistical homogeneity and stationarity as

synonymous.
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Figure 1: An example of a signal that is approximately piecewise stationary.
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Figure 2: Mean texture log and homogeneity index (the stalactite looking signal on top).

3 A segmentation-oriented strategy for textural transforms

On one hand, the idea of associating a texture parameter computed from a window to the
center of this window is not as natural as it might seem a priori. Indeed, a texture
parameter is associated with a window, not with a point. In reality, any point belonging to
this window is equally entitled to receive this texture parameter, especially if every point
has contributed equally to its computation. On the other hand, the whole purpose of a
texture log is to detect spatial variations of the local texture. From this standpoint, it is
desirable that the spatial variations of the texture log reflect the spatial variations of the
statistics of the underlying signal. Attributing the texture parameter to the window center
is a simple way to obtain this dependence.

In this paper, we adopt the standpoint according to which the textural transform is to
be used primarily for segmentation purposes, i.e. to divide the signal into zones having
similar statistics. In other words, the textural transform is regarded as a first step toward
segmentation. It follows from this standpoint, for instance, that if there is an abrupt
transition between two zones, then the texture log should also exhibit an abrupt transition.
It also follows that it is necessary to associate a texture parameter with each point of the
signal, i.e. the textural transform should be resolution preserving, which is not possible if
only the window centers are considered (i.e. sliding window processing). Finally, a
statistical textural transform should be based only on windows that are reasonably
homogeneous statistically, as far as possible.

To satisfy these guidelines, let us examine again the abrupt transition between two
zones, (Figs. 1-2). If the window considered is homogeneous enough, then there is no
statistical inconsistency and we choose to adopt the usual sliding window method, i.e. we
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attribute to a point x the texture parameter of the window that is centered on x. However,
if the window overlaps between two different zones A and B, then the window is
statistically inconsistent and we want to modify the usual sliding window strategy. If the
point x considered belongs to zone A, then it seems natural to attribute to x the texture
parameter of a window that both contains x and that lies entirely within the zone A (see
point x3 in Fig. 3). Indeed, x belongs to zone A and should therefore be attributed a
texture parameter that is representative of this zone. From this standpoint, the problem is
to select for each point x the most appropriate window among all the windows that
contain x.

We propose the following window selection rule for a given point x. Among all the
windows that contain x and that have a satisfactory homogeneity (if they exist) we select
the window that is most centered on x, i.e. the window for which the distance between its
center y and x is minimum. If none of the windows containing x is homogeneous enough,
then we simply select the most homogeneous window containing x. Notice that in general
there will be two windows at an equal distance ly - xJ of x, the left and the right window.
To make the choice unambiguous, we select the most homogeneous of these two
windows. It is emphasized that if the signal is homogeneous enough, then our definition
reduces to the usual sliding window approach. However, if the homogeneity is not
acceptable, then our definition forces the windows to "stay away" from discontinuities.
We will refer to this approach as the sliding window method with homogeneity
correction, or SWMHC.

Let us examine a few consequences of our homogeneity correction. If x is closeb to
the beginning of the signal, then the windows containing x cannot be centered on x (see
point xl in Fig. 3). If x is away from the boundaries and in a homogeneous zone, then the
window selected will be centered on x (point x2 in Fig. 3). If x is closec to a boundary
between two zones, then the window selected will tend to be entirely within its own zone
(point x3 in Fig. 3).

ZONE A ZONE B

Boundary W1

II I

xl x2 x3

Figure 3: Attribution of windows to each point at the boundary of two zones.

We applied this homogeneity correction algorithm to the signal of Fig. 1, setting the
acceptable degree of homogeneity to 0.05 (in statistics, it is usual to reject a hypothesis if
the probability associated with a test is smaller than 0.05). It is seen in Fig. 4 that the
discontinuities are detected with perfect accuracy, even with a 50-point window size,
whereas the rest of the log remains unchanged with respect to Fig. 2. A minimum
homogeneity index of 0.05 could be obtained everywhere. Our SWMHC has the merit of

b If the distance between x and the beginning of the signal is smaller than L, / 2, where

Lw is the window size.
'If the distance between x and the boundary of the signal is smaller than Lw / 2, where Lw

is the window size.
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detecting boundaries sharply even for large windows, which is not possible with the usual
sliding window method. Our algorithm reduces uncertainties on texture logs because the
most inhomogeneous windows are rejected. In the following, the SWMHC will be applied
to the generalized dimensions D,(q).
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Figure 4: Mean texture log with homogeneity correction. The boundaries at positions 500 and 100 are detected
with perfect accuracy, in spite of the fact that a 50-point window size was used.

It is beyond the scope of this paper to give a comprehensive comparison of our
method with the numerous other approaches to texture segmentation, ranging from
statistical methods, wavelet based methods and neural networks. In the context of wavelet
based methods, for instance, clustering procedures6' 7, 8 or detection of sharp transitions
over wavelet energy measurements have been used to produce a final segmentation.
These algorithms have good experimental performances but rely on ad hoc parameter
settings9 . The same thing can be said of the segmentation methods that combine statistical
parameters and neural networks'° because the network parameters are adjusted on training
sets.

One of the first methods used in texture segmentation, and still a major one, is the
spatial gray level co-occurrence matrix". Many authors have approached the problem of
texture segmentation with split-and-merge methods combined with co-occurrence
matrices" 5 . In this context, one creates homogeneous regions by splitting inhomogeneous
regions into smaller regions until a given homogeneity criterion is satisfied in each region
(the regions can be rectangular if a regular grid is used, or else they can have other shapes
depending on the space partitioning method selected). In comparison, our approach
consists in constructing a textural transform based on a fixed window size (and shape),
but the window containing a given point can be moved continuously to satisfy a
homogeneity criterion. In addition, our choice of a statistical test to assess homogeneity
gives a certain objectivity to the homogeneity criterion.

For a fixed window size, our method cannot always reach an acceptable degree of
homogeneity everywhere. However, reducing sufficiently the window size allows
reaching an acceptable homogeneity at all points (as in the split-and merge algorithm). An
appropriate combination of texture logs obtained for different window sizes can be used
to produce a multi-resolution texture log with satisfactory homogeneity everywhere.
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4 Brief review of the generalized multifractal analysis representation

4.1 Generalized dimensions defined as projections of the generating function on
orthogonal polynomials

We summarize here the generalized multifractal analysis (GMA) representation'. The
generating function Xq(8) used in multifractal analysis is a function of two variables q

and 6. The parameter q is real and 8 Ž 0 is a scale ratio 8 = f / L <1, where g is a length
scale and L is an upper bound on i. Multifractal analysis can be done on the condition
that Xq(3) satisfies the power law property7 Xq( 8 )~ 8 ,(q) in an interval 8 E [6,i, 8•]

called scaling range. With the change of variable x = - ln(3)> 0 t 6 = exp(-x) and the
definition Oqq(X) - ln(Xq(exp(-x))), this property can be rewritten in the linear form

Oq (x) = , 0 (q) + ,r (q) x. Many signals cannot be described satisfactorily with this linear
model. The GMA representation of Oq (x) solves this problem by expanding Oq(x) in

terms of orthogonal polynomials Pn (x) of increasing order n

N
pq (X) = '(q) P, (x)(1

n=O

The model (1) is a generalization of the multifractal model. The coefficients "n(q) are
generalizations of "r(q) 7, and "l (q) corresponds to the usual T(q) for multifractals. In this
paper, we compute Xq( 8 ) for all the length scales available, i.e. gn = n, n = 1, 2,..., Nx,

The coordinates x take discrete values x,, i = 1, 2, ... , Nx and Oq(x) is computed for these
xi's. The Pn (x) s are orthogonal with respect to a scalar product that we define for any
two functionsf and g by

N,
Yf, g) -I• w(xi) fAxi) g(xi) (2)

i=1

where the w(xi) > 0 are weights. A first possibility is to use unit weights, i.e. w(xi) = 1
for each i, which gives a larger weight to large scales. Indeed, the density p(x) of the
xi'salong the x -axis varies approximately according to
p(xn) = 1 I(xn - Xn~a) = 1/ ln(n+l1 / fn) = in and therefore it increases as in increases.
Another possibility is to use variable weights that compensate for the non-uniform
density of the xi' s by choosing w(xn) = k / p(xn) where the constant k is chosen so that
Zi w(xi) = 1. This choice results in approximately uniform weighting along the x-axis in
the summation (2). It is this second choice that we make in this paper, mostly because it
was found to lead to exponents rn (q) that are more sensitive to textural variations.

The Pn(x)s are obtained with a Gram-Schmidt orthogonalization starting with

P0(x) 1 and using iteratively the formula
P.(x) =xn - {fn(O) + fin(1) P, (x) +... + P, (n- 1) Pn-l(x)J. Hence they satisfy

(Fn,P.) = n,m (P ,Pn) and the rn(q) s in (1) are defined by

"rn (q) = (Pn, Oq )/(Pn, P, (3)
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The r,(q)' s can be always written in the form r,(q) = (q - 1) D,(q), where the D,(q)' s
are formal extensions of the generalized dimensions D(q)3. The linear component Dl (q)
reduces to the generalized dimension D(q) if the measure is multifractal, i.e. if N = 1 in
eq. (1).

4.2 Definition of the generating function

We define the measure of an interval Br(6) of size 6 centered on a point r by

Pr(,5)= xrE,(b) S(ri). To estimate uncertainties on the generating function, we always

consider a collection of M equal size samples ( M _> 2) drawn from the same statistical
ensemble. For a single window in a signal, we split the window intofour disjoint intervals
of the same size that are regarded as four independent samples. Firstly, we define for each
of these samples an "individual" generating function by (this form holds only if pr(8 ) > 0,
see 3)

xq (6) = 6(q-1) D ([p (8)]q )S/((P (6))s)q (4)

where D is the dimension of the embedding space, and angle brackets ('")s denote a

spatial average. The denominator of (4) guarantees that Xq(8) is normalized exactly, i.e.

that , (6) = 1 for all 8. Secondly, we define the "global" generating function iq (8)
obtained from the M samples by

where ,4()(8) denotes the individual generating function of sample i. The uncertainty on

iq(b) is estimated by taking into account the variations of Xq•()) from sample to

sample, and the corresponding uncertainties on D,,(q) can be derived 3 (we assume that the
qX()(6)s are uncorrelated). The error formulas used in this paper are (o-(X) denotes the

standard deviation of a random variable X)

(p2
(0q (X)) 1 ( ,"4q )) J 2p2,0"2(0q))/(&P

a(D, (q)) = a(zr (q))/lq - 11

5 Behavior of the D.(q)s for a transition between two distinct random
binomial measures

Our goal here is to show that the generalized dimension DI(1) reduces to the classical
information dimension D(1) for such archetypal multifractals. The homogeneity index is
computed as previously except for one difference: The two samples obtained from each
half of the window are normalized by their mean before the statistical tests are done. This
choice is partly justified by the fact that the two halves of a binomial measure are
statistically identical only if each half of the measure is individually normalized.

We construct the random binomial measures as usual. Initially, a unit mass is
assigned to the interval [0, 1]. In the first step, the unit interval is split in two halves
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[0, 1/2] and [1/2, 1]. The first interval receives a random fraction Wl,1 of the mass, where

0 _• W, !5 1, while the second interval receives a mass 1 - W1,. In the next steps this

splitting procedure is repeated in a self-similar manner: In the step n+ 1, interval i,
[(i- 1) (1 / 2),i (1/ 2)n] of size 8, = (1 / 2)" and mass pi (n), is split in two halves
receiving the masses pi,1 (n + 1) = WI,i pi(n) and pi,2 (n + 1) = (1- Wn,i) pi(n), where Wn,i

is a random variable (1 _ i _• 2n). The multipliers Wn,i satisfy 0 -• Wn, -< 1 and are

identically distributed and mutually independent random variables. We choose here
multipliers that take two values w, and w2 = 1 - w1 with equal probability. The signal
examined (Fig. 5) is composed of two adjacent binomial measures with parameters w, =
0.25 and w, = 0.35, 1024 points each (n = 10, i.e. 10 iterations). Each measure was
normalized to get a unit root mean square.

We first consider in Fig. 6 the DI(1) texture log obtained with a window size of
128 points, a maximum box size of 32 points and no homogeneity correction. The dashed
lines represent the theoretical values of D(1) for the two binomial measures (we get
D(]) = 0.811 and 0.934 with D(1) =-w 1 log2 (w0)- w2 log2 (w2 )). DI(1) fluctuates
around the theoretical value of D(1) on both sides, which shows that the GMA
representation is consistent with the usual description of multifractals. It can be noticed
that D((J) oscillates a little below D(J), though the difference is small, which can be
explained by the fact that our generating function 0q(x) is not perfectly linear for the
binomial measure. The homogeneity index drops to very small values at the boundary
between the two measures, located at position 1024. Within each zone, the homogeneity
index is relatively large but sometimes drops to small values. This occasional lack of
homogeneity results from the fact that the statistical self-similarity of the binomial
measure holds exactly only if the two intervals compared with the statistical test match
exactly the construction grid of the measure, which is usually not the case.
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Figure 5: Two adjacent binomial measures.

We recomputed the DI(1) texture log of Fig. 6 with the homogeneity correction at
level 0.05 (Fig. 7). This level was achieved at about 75% of locations, but the level 0.04 is
reached almost everywhere. The transition between the two measures is sharp and its
location exact, in spite of a window size of 128 points. The amplitude of the fluctuations
is reduced by the homogeneity correction. Plateaus are formed, which is a characteristic
property of the homogeneity correction. Higher order dimensions, starting with D2 (1),
were found to be too small to be distinguished unambiguously (taking into account error
bars). This is expected because the function Oq(x) is almost perfectly linear for such
binomial measures.
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Figure 6: D1 (1) texture log. The stalactite looking curve on top is the homogeneity index.
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Figure 7: D)(1) texture log of Fig. 5 with homogeneity correction at level 0.05.

6 Behavior of the Dn(q)s for a transition between a binomial measures and a
non self-similar measure

In this section, we show that the GMA representation can be used to detect and quantify
departures from self-similarity, while providing an analogue of the generalized dimension
even if the measure is not self-similar. We examine the GMA texture logs for a transition
between a random binomial measure with w, = 0.3 to a non self-similar measure. The
latter is constructed by making the factor w, vary with the step index n (with the
multiplicative process described in section 5.1). Our non self-similar measure was
obtained with the following values of wi(n) (n1l,2... ,10): {0.32, 0.27, 0.28, 0.38, 0.25,
0.25, 0.42, 0.40, 0.11, 0.11}. The total measure is obtained by sticking together this
measure with the binomial measure (Fig. 8).

The two measures are distinguished clearly by D1 (1) (Fig. 9) and the homogeneity
correction again results in a sharp detection of the boundary (Fig. 10). The D2(1) texture
log (Fig. 11) shows a marked transition between the two measures. Indeed, jD 2(M1) is
small on the side of the binomial measure (left), and then becomes larger on the side of
the non self-similar measure (right). A larger 1D2(1)I indicates a larger deviation of oq(x)
from a straight line, to be expected for a non multifractal.
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Figure 8: The first half sample is a random binomial measure with w, = 0.3. The second half of the sample has
been built with a multiplicative process where w, varies with the step index.
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Figure 9: DI(1) without any homogeneity correction. The dashed line is the theoretical value of D(1).
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Figure 10: Same than Fig. 10, but with the homogeneity correction at level 0.05.
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Figure 11: D2(1) without any homogeneity correction.

7 Conclusions

For signals that are nearly piecewise stationary, our method for generating textural
transforms results in a sharper detection of the boundary between distinct segments.
Indeed, the uncertainty on the location of the transition is much smaller than the window
size. These improvements have been obtained in the context of approximately piecewise
stationary signals. The special cases examined were the local average of a white noise and
the generalized dimensions D,(q) of adjacent binomial measures. A better assessment of
the algorithm proposed should involve segmentation tests in the presence of different
types of noise, e.g. colored noise, long-tailed distribution noise, as well as real signals
such as I -d cuts through images.

It is emphasized that our method is quite general and can be used for any statistical
parameter. Applied to the GMA representation, we demonstrated that the generalized
dimensions D,(q) can clearly detect departures from multifractalityd in a signal, while
providing the analogue of the classical generalized dimension D(q) for multifractals.
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